
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Ethereum-Aleo Bridge

Veridise Inc.
April 25, 2024

▶ Prepared For:

Venture23
https://venture23.xyz/

▶ Prepared By:

Benjamin Mariano
Jacob Van Geffen

▶ Contact Us: contact@veridise.com

▶ Version History:

Apr. 25, 2024 V2
Mar. 29, 2024 V1

© 2024 Veridise Inc. All Rights Reserved.

https://venture23.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-V23-VUL-001: Arbitrary messages can be sent 8
4.1.2 V-V23-VUL-002: Anyone can take ownership of the bridge 10
4.1.3 V-V23-VUL-003: Anyone can remove a token service 11
4.1.4 V-V23-VUL-004: Attacker can create signature database entry 12
4.1.5 V-V23-VUL-005: Arbitrary users can add unconfirmed packets 15
4.1.6 V-V23-VUL-006: Incorrect logic for low thresholds 16
4.1.7 V-V23-VUL-007: Credentials stored as plain text 17
4.1.8 V-V23-VUL-008: Index never incremented for pruning 19
4.1.9 V-V23-VUL-009: Add rate limiting to DB service 20
4.1.10 V-V23-VUL-010: Quorum threshold initialized to zero 21
4.1.11 V-V23-VUL-011: Missing check for valid threshold 22
4.1.12 V-V23-VUL-012: Disable vote updating on executed proposals 23
4.1.13 V-V23-VUL-013: Missing response body close after HTTP request 24
4.1.14 V-V23-VUL-014: Arbitrary length Aleo addresses 25
4.1.15 V-V23-VUL-015: Npm audit issues . 26
4.1.16 V-V23-VUL-016: Old unconfirmed packets fetched first 27
4.1.17 V-V23-VUL-017: Updating unsupported token info 29
4.1.18 V-V23-VUL-018: No verification that token is supported on release . . . 30
4.1.19 V-V23-VUL-019: Missing bounds check 31
4.1.20 V-V23-VUL-020: Non-restrictive types 32
4.1.21 V-V23-VUL-021: Unnecessary unchecked blocks 33
4.1.22 V-V23-VUL-022: Unclear events on quorum threshold update 34
4.1.23 V-V23-VUL-023: Unnecessary internal function 35
4.1.24 V-V23-VUL-024: Unnecessary function arguments 36
4.1.25 V-V23-VUL-025: Unnecessary Getter Functions 37
4.1.26 V-V23-VUL-026: Missing non-zero checks on transaction parameters . . 38
4.1.27 V-V23-VUL-027: Remove commented code 40
4.1.28 V-V23-VUL-028: Unused function _splitSignature 41
4.1.29 V-V23-VUL-029: Unnecessary cast to address 42
4.1.30 V-V23-VUL-030: Refactor get_valid_unique_address_count method . . . 43
4.1.31 V-V23-VUL-031: Unnecessary check for equal vote counts 45

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

4.1.32 V-V23-VUL-032: Can make stronger voting check 46
4.1.33 V-V23-VUL-033: Unnecessary function argument for chain ID 47
4.1.34 V-V23-VUL-034: Typos and incorrect comments 48
4.1.35 V-V23-VUL-035: Unused mapping proposal_vote_counts 49
4.1.36 V-V23-VUL-036: Unnecessary code and typos in attestor 50
4.1.37 V-V23-VUL-037: Use express best practices 51
4.1.38 V-V23-VUL-038: Typos and unused code in database service 52

Executive Summary 1
From Feb. 19, 2024 to Mar. 19, 2024, Venture23 engaged Veridise to review the security of
their Ethereum-Aleo Bridge. The review covered the implementation of a bridge between
Ethereum and Aleo. Veridise conducted the assessment over 8 person-weeks, with 2 engineers
reviewing code over 4 weeks from commits c77637b-c424b4d. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The Ethereum-Aleo Bridge developers provided the source code of the
Ethereum-Aleo Bridge contracts for review. The source code appears to be mostly original code
written by the Ethereum-Aleo Bridge developers. It contains documentation in the form of
READMEs and documentation comments on functions and storage variables. To facilitate the
Veridise auditors’ understanding of the code, the Ethereum-Aleo Bridge developers also shared
some high-level documentation explaining how the different larger systems fit together.

The source code contained a test suite, which the Veridise auditors noted tested each part of the
codebase well in isolation.

Summary of issues detected. The audit uncovered 38 issues, 5 of which are assessed to be
of high or critical severity by the Veridise auditors. Specifically, the critical issues involved
insufficient access control which could allow sending of arbitrary packets (V-V23-VUL-001,V-
V23-VUL-005) and denial of service (V-V23-VUL-003), as well as bad signature checking
which could allow an attacker to take ownership of the bridge (V-V23-VUL-002) or remove a
token service (V-V23-VUL-003). The Veridise auditors also identified 4 medium-severity issues,
including incorrect logic for thresholds (V-V23-VUL-006) and bad pruning mechanisms for
stored packets in the attestor (V-V23-VUL-008) as well as 4 warnings and 18 informational
findings.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Ethereum-Aleo Bridge c77637b-c424b4d Solidity,Leo,Go Ethereum,Aleo

Database Service 8c53a0e Typescript -

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Feb. 19 - Mar. 19, 2024 Manual & Tools 2 8 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Fixed Acknowledged
Critical-Severity Issues 5 3 5
High-Severity Issues 0 0 0
Medium-Severity Issues 4 2 4
Low-Severity Issues 7 6 6
Warning-Severity Issues 4 3 4
Informational-Severity Issues 18 13 14
TOTAL 38 27 33

Table 2.4: Category Breakdown.

Name Number
Maintainability 13
Logic Error 9
Data Validation 7
Access Control 3
Information Leakage 1
Denial of Service 1
Resource Leak 1
Dependency 1
Events 1
Library Usage 1

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the project’s smart contracts
and attestor logic. In our audit, we sought to answer questions such as:

▶ Can incorrect packets be emitted by smart contracts and signed by attestors?
▶ Can attestor signatures be forged or otherwise circumvented?
▶ Are attestors vulnerable to denial-of-service attacks?
▶ Can arbitrary users claim ownership of the bridge?
▶ Is the bridge vulnerable to replay attacks?
▶ Is state appropriately maintained/updated across both chains?
▶ Are credentials for attestors maintained securely?
▶ Can event reordering be used to disrupt the inteded behavior of the bridge?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of our custom Aleo static analyzer. This static analyzer is designed to
find instances of common Aleo smart contract vulnerabilities, such as information leaks and
uninitialized variables.

Scope. The scope of this audit is limited to the solidity, aleo, and attestor folders, as well as
the full dbservice repository. The solidity and aleo folders contain smart contracts for their
respective blockchains, while the attestor folder contains a Golang project that is run by each
attestor for the bridge. The dbservice repository defines services for adding both signatures
and unconfirmed packets to a database and is written in Typescript.

Methodology. Veridise auditors first met with the developers, who gave a high-level walkthrough
of the code base. They then began a manual audit of the code, considering both the smart
contracts’ & attestor logic’s isolated correctness, as well as the correctness of how the attestor
logic worked with both sets of smart contracts. Throughout the audit, the Veridise auditors
regularly met with the Ethereum-Aleo Bridge developers to ask questions about the code and
to share any issues found.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-V23-VUL-001 Arbitrary messages can be sent Critical Fixed
V-V23-VUL-002 Anyone can take ownership of the bridge Critical Fixed
V-V23-VUL-003 Anyone can remove a token service Critical Fixed
V-V23-VUL-004 Attacker can create signature database entry Critical Acknowledged
V-V23-VUL-005 Arbitrary users can add unconfirmed packets Critical Acknowledged
V-V23-VUL-006 Incorrect logic for low thresholds Medium Acknowledged
V-V23-VUL-007 Credentials stored as plain text Medium Acknowledged
V-V23-VUL-008 Index never incremented for pruning Medium Fixed
V-V23-VUL-009 Add rate limiting to DB service Medium Fixed
V-V23-VUL-010 Quorum threshold initialized to zero Low Fixed
V-V23-VUL-011 Missing check for valid threshold Low Fixed
V-V23-VUL-012 Disable vote updating on executed proposals Low Fixed
V-V23-VUL-013 Missing response body close after HTTP request Low Fixed
V-V23-VUL-014 Arbitrary length Aleo addresses Low Fixed
V-V23-VUL-015 Npm audit issues Low Fixed
V-V23-VUL-016 Old unconfirmed packets fetched first Low Intended Behavior
V-V23-VUL-017 Updating unsupported token info Warning Fixed
V-V23-VUL-018 No verification that token is supported on release Warning Acknowledged
V-V23-VUL-019 Missing bounds check Warning Fixed
V-V23-VUL-020 Non-restrictive types Warning Fixed
V-V23-VUL-021 Unnecessary unchecked blocks Info Fixed
V-V23-VUL-022 Unclear events on quorum threshold update Info Fixed
V-V23-VUL-023 Unnecessary internal function Info Fixed
V-V23-VUL-024 Unnecessary function arguments Info Fixed
V-V23-VUL-025 Unnecessary Getter Functions Info Fixed
V-V23-VUL-026 Missing non-zero checks on transaction parameters Info Acknowledged
V-V23-VUL-027 Remove commented code Info Fixed
V-V23-VUL-028 Unused function _splitSignature Info Fixed
V-V23-VUL-029 Unnecessary cast to address Info Fixed
V-V23-VUL-030 Refactor get_valid_unique_address_count method Info Intended Behavior
V-V23-VUL-031 Unnecessary check for equal vote counts Info Intended Behavior
V-V23-VUL-032 Can make stronger voting check Info Intended Behavior
V-V23-VUL-033 Unnecessary function argument for chain ID Info Fixed
V-V23-VUL-034 Typos and incorrect comments Info Fixed
V-V23-VUL-035 Unused mapping proposal_vote_counts Info Intended Behavior
V-V23-VUL-036 Unnecessary code and typos in attestor Info Fixed
V-V23-VUL-037 Use express best practices Info Fixed
V-V23-VUL-038 Typos and unused code in database service Info Fixed

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-V23-VUL-001: Arbitrary messages can be sent

Severity Critical Commit c77637b
Type Access Control Status Fixed

File(s) base/bridge/OutgoingPacketManagerImpl.sol

Location(s) _sendMessage
Confirmed Fix At N/A

The function _sendMessage is used to first add metadata to a packet (including sequence number
and version number) and then "send" the message by emitting a PacketDispatched event as
shown below.

1 function _sendMessage(PacketLibrary.OutPacket memory packet) public virtual {
2 packet.version = 1;
3 packet.sequence = ++sequence;
4 outgoingPackets[packet.sequence] = packet.hash();
5 emit PacketDispatched(packet);
6 }

Snippet 4.1: _sendMessage implementation from outgoingPacketManagerImpl

This function is marked public, meaning any user can call this function to send an arbitrary
message.

Impact Messages are intended to be sent via the sendMessage function in Bridge.sol, which
includes a number of checks that the packet is valid, including checks that the destination chain
is supported and the contract is not paused. In addition to these checks, the most important
check is that the only caller of sendMessage should be the TokenService contract, which only
calls sendMessage after transfers of either ETH or ERC20 tokens (see transfer functions in
TokenService). However, none of the checks from sendMessage are performed in _sendMessage.
This means an attacker can send any message they want, including ones that indicate a transfer
which they never actually performed. This could allow an attack to steal funds.

Proof of Concept Below is a test case added to 001.Bridge.test.js which shows that calling
_sendMessage doesn’t revert, even if passed an invalid chain ID.

1 it(’VERIDISE: doesnt revert when calling _sendMessage with unknown destination

chainId’, async () => {

2 const unknowndestChainId = 3;

3 const outPacket = [

4 1,

5 1,

6 [1, ethers.Wallet.createRandom().address],

7 [unknowndestChainId, "

aleo1fg8y0ax9g0yhahrknngzwxkpcf7ejy3mm6cent4mmtwew5ueps8s6jzl27"], [ethers.Wallet

.createRandom().address, "

aleo1fg8y0ax9g0yhahrknngzwxkpcf7ejy3mm6cent4mmtwew5ueps8s6jzl27", 10, "

aleo1fg8y0ax9g0yhahrknngzwxkpcf7ejy3mm6cent4mmtwew5ueps8s6jzl27"],

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 9

8 100

9];

10 await proxiedV1.connect(tokenService)._sendMessage(outPacket);

11 });

Recommendation Change the visibility of the function to internal.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-V23-VUL-002: Anyone can take ownership of the bridge

Severity Critical Commit c77637b
Type Logic Error Status Fixed

File(s) aleo/programs/council_v0003.leo

Location(s) tb_transfer_ownership
Confirmed Fix At N/A

The function tb_transfer_ownership is used to transfer ownership of the bridge. The finalize

function is as follows.

1 finalize tb_transfer_ownership(proposal_hash: field, voters: [address; 5], vote_keys:
[field; 5], votes: u8) {

2 // Ensure that the votes are from valid members
3 for i: u8 in 0u8..SUPPORTED_THRESHOLD {
4 assert(Mapping::contains(members, voters[i]));
5 }
6

7 // Get the threshold
8 let threshold: u8 = Mapping::get(settings, THRESHOLD_INDEX);
9

10 assert(votes >= threshold);
11

12 // Ensure that the proposal has not been executed
13 assert(!Mapping::contains(proposal_executed, proposal_hash));
14

15 // Mark the proposal as executed
16 Mapping::set(proposal_executed, proposal_hash, true);
17 }

Snippet 4.2: Implementation of finalize tb_transfer_ownership

The function does not use the vote_keys argument, which is where the actual votes are stored.
Therefore, the votes of the members are never actually checked.

Impact Anyone can call this function and as long as they pass in an array of valid voters
and the length of this array is greater than the threshold, they can transfer ownership of the
bridge.

Recommendation Add the check of vote_keys[i].

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 11

4.1.3 V-V23-VUL-003: Anyone can remove a token service

Severity Critical Commit c77637b
Type Logic Error Status Fixed

File(s) aleo/programs/council_v0003.leo

Location(s) tb_remove_service()
Confirmed Fix At N/A

The function tb_remove_service is used to remove a token service. The finalize function is as
follows.

1 finalize tb_remove_service(proposal_hash: field, voters: [address; 5], vote_keys: [
field; 5], votes: u8) {

2 // Ensure that the votes are from valid members
3 for i: u8 in 0u8..SUPPORTED_THRESHOLD {
4 assert(Mapping::contains(members, voters[i]));
5 }
6

7 // Get the threshold
8 let threshold: u8 = Mapping::get(settings, THRESHOLD_INDEX);
9

10 assert(votes >= threshold);
11

12 // Ensure that the proposal has not been executed
13 assert(!Mapping::contains(proposal_executed, proposal_hash));
14

15 // Mark the proposal as executed
16 Mapping::set(proposal_executed, proposal_hash, true);
17 }

Snippet 4.3: Implementation of finalize tb_remove_service

The function does not use the vote_keys argument, which is where the actual votes are stored.
Therefore, the votes of the members are never actually checked.

Impact Anyone can call this function and as long as they pass in an array of valid voters and
the length of this array is greater than the threshold, they can remove a token service.

Recommendation Add the check of vote_keys[i].

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-V23-VUL-004: Attacker can create signature database entry

Severity Critical Commit 08f5a8e
Type Access Control Status Acknowledged

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

Signatures are added to the database by making POST requests, per the following code snippet
which adds the handler this.chainSignatureController.create:

1 private initializeRoutes() {
2 ...
3 this.router.post(
4 ‘${this.path}‘,
5 validationMiddleware(ChainSignatureDto, ’body’),
6 signatureValidatorMiddleware,
7 this.chainSignatureController.create,
8);
9 }

Snippet 4.4: Snippet from initializeRoutes() in chainSignature.route.ts

The validationMiddleware ensures that the body of the request adheres to the format specified
in ChainSignatureDto and the signature validation ensures that the signature, packet hash, and
specified attestor all match with the following logic:

1 const signatureValidatorMiddleware = (req: Request, res: Response, next: NextFunction
) => {

2 try {
3 const data = req.body;
4 const { attestorSigner, packetHash, signature } = data;
5 let isSignatureValid = false;
6

7 ...
8

9 if (attestorSigner.startsWith(’aleo’)) {
10 isSignatureValid = signVerify(signature, attestorSigner, packetHash);
11 } else {
12 const signer = ethers.recoverAddress(packetHash, signature);
13

14 isSignatureValid = compareAddress(signer, attestorSigner);
15 }
16

17 if (!isSignatureValid) throw new HttpException(403, ’Packet validation failed’);
18 next();
19 } catch (error) {
20 next(error);
21 }
22 };

Snippet 4.5: Snippet from signatureValidatorMiddleware()

At no point is it verified that the sender of such a request is a trusted sender — thus, any attacker

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 13

can create signature entries in the database.

Impact Because of the signature validator middleware, even an attacker who is attempting to
post a signature must post a "valid" signature, in the sense that the signature must be validated
to match the given attestor and packet hash. However, an attacker can still perform the following
attacks:

1. Fill the database with bogus signatures
2. Block legitimate signatures from being added to the database
3. Delete valid unconfirmed packet requests before they are processed

These attacks all take advantage of the fact that packets are stored according to the following
unique index in the database:

1 chainSignatureSchema.index(
2 {
3 sourceChainId: 1,
4 destChainId: 1,
5 sequence: 1,
6 attestorSigner: 1,
7 },
8 { unique: true },
9);

Snippet 4.6: Snippet from chainSignature.model.ts

When creating entries in the database, the following code is used:

1 public async create(chainData: ChainSignature): Promise<ChainSignature> {
2 // Create
3 const packetExists = await this.chainSignature.findOne({
4 destChainId: chainData.destChainId,
5 sourceChainId: chainData.sourceChainId,
6 attestorSigner: chainData.attestorSigner,
7 sequence: chainData.sequence,
8 });
9

10 if (packetExists) {
11 // Throw error with success status
12 throw new HttpException(201, ’Duplicate packet’);
13 }
14

15 const createdData = await this.chainSignature.create(chainData);
16

17 return createdData;
18 }

Snippet 4.7: Snippet from create() in chainSignature.service.ts

The create call creates a new entry by first checking if one exists, using the unique index
including the destination chain ID, source chain ID, attestor, and sequence number. If an entry
for this signature already exists, an exception is thrown. Otherwise, the signature is added to
the database.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

14 4 Vulnerability Report

Bogus Database Entries The issue is that there is never any verification that the destination/-
source chain IDs nor the sequence number actually match the signature. The caller can simply
make up these values. This means an attacker can take a valid signature, attestor, and packet
hash from the database, change the source/destination chain IDs and/or sequence number,
and submit it. This will pass all validation steps and will be added as a new element of the
database. Thus, an attacker can enter as many bogus entries as they want.

Blocking Valid Signatures Furthermore, due to the check in create which throws an exception
if the packet exists, an attacker can use this to block legitimate packets from being entered. For
instance, an attacker can use the technique described above to create a bogus entry for sequence
number X, which will get entered and block the real entry for sequence number X whenever it is
attempted to be added.

Deleting Valid Unconfirmed Packets On creation of a signature entry on the database, the
corresponding unconfirmed packet entry in the database is deleted by the following code:

1 public create = async (req: Request, res: Response, next: NextFunction) => {
2 try {
3 const isUnConfirmedPacket = req.query.unconfirmed == ’true’;
4

5 const reqData: ChainSignatureDto = req.body;
6 await this.chainSignatureService.create(reqData);
7 if (isUnConfirmedPacket) await this.unconfirmedPacketService.delete(reqData);
8

9 res.status(201).json({ message: ’create’ });
10 } catch (error) {
11 next(error);
12 }
13 };

Snippet 4.8: Snippet from create() in chainSignature.controller.ts

This code deletes the corresponding unconfirmed packet entry from the unconfirmedPacketService
. As mentioned previously, an attacker can make up the source/destination chain IDs and
the sequence number. Similarly, there is no validation of the unconfirmed field of the request.
Thus, an attacker can create a bogus signature whose source/chain IDs and sequence number
correspond to a real unconfirmed packet. After the signature is added to the database, the
unconfirmed packet will be deleted and blocked from future entry in the database.

Recommendation Add in validation that attestors are the only users able to add signatures to
the database. It should be noted that even in the case that only attestors can write signatures,
any individual attestor could perform the attacks described above. As a result, either attestors
should be carefully chosen/trusted entities or further validation will be needed on all database
entries.

Developer Response The developers are planning to implement a solution where the attestors
and database service will communicate through MTLS. In that way, writes to this database will
no longer be accessible publically and all read requests will be throttled through nginx.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 15

4.1.5 V-V23-VUL-005: Arbitrary users can add unconfirmed packets

Severity Critical Commit 08f5a8e
Type Access Control Status Acknowledged

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

There is no validation that posting new unconfirmed packets is done through a trusted user.

1 private initializeRoutes() {
2 this.router.get(‘${this.path}‘, /*validationMiddleware(UnconfirmedPacketDto, ’body

’),*/ this.unconfirmedPacketController.get);
3 this.router.post(‘${this.path}‘, validationMiddleware(UnconfirmedPacketDto, ’body’)

, this.unconfirmedPacketController.create);
4 }

Snippet 4.9: Snippet from the unconfirmedPacket route initialization, which only validates that
the unconfirmed packet is well-formed.

Since unconfirmed packets do not undergo any additional checks on the part of attestors or the
per-blockchain smart contracts, this essentially allows arbitrary users to add any packets they
wish.

Impact Since no validation is done on the part of the attestor, the power to add arbitrary
packets allows users to also get those packets signed. This means that attackers could construct
an unconfirmed packet with any transaction hash they would like, get the packet signed, and
then propagate the transaction across the bridge.

By using this exploit, attackers could construct a bogus transaction that adds funds into an
attacker’s account. The attacker could then spend the funds arbitrarily before any altruistic
party has the opportunity to delete the faulty packet.

Recommendation Only allow a small number of trusted origins to add unconfirmed packets.
This would allow for a separate review process through which unconfirmed packets can be
validated against the actual packet events emitted by the blockchain (or against the packet
mapping in the case of the Aleo blockchain). Note that this review process may involve some
degree of manual inspection.

Following this, we recommend requiring multiple attestor signatures to confirm unconfirmed
packets. This separate process would ensure that a majority of attestors agree with the result of
the separate review process.

Developer Response The developers are planning to implement a solution using MTLS. In
particular, admin certificates will be required to post unconfirmed packets to the database
service.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

16 4 Vulnerability Report

4.1.6 V-V23-VUL-006: Incorrect logic for low thresholds

Severity Medium Commit c77637b
Type Logic Error Status Acknowledged

File(s) token_bridge_v0003.leo, ConsumedPacketManagerImpl.sol

Location(s) _checkSignatures(), get_majority_count()
Confirmed Fix At N/A

On both the Aleo and Ethereum chains, when a packet is received, the consumer of the packet
can choose which signatures to pass in. The logic on both will choose whichever vote-type
("yay" or "nay") got the most votes, and will allow the packet to be consumed accordingly if the
threshold for that count is reached. This works in the assumed case of a threshold of 3 with
5 attestors. However, if the threshold is set to less than half the attestors, the logic no longer
works as expected.

Impact If the threshold is set to less than half the number of attestors and a packet gets greater
than or equal to threshold votes for both yay and nay, the caller can simply choose their desired
outcome by passing in the votes with their desired outcome.

Recommendation Add a check that the threshold is always greater than half the number of
attestors.

Developer Response The developers have acknowledged the issue but at this time have
decided that it will be assumed to be an operational requirement of the system. In particular,
the threshold will always be more than 51%. The council will act correctly and the minimum
threshold will always be fulfilled. The current configuration allows more flexibility, so will be
kept.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 17

4.1.7 V-V23-VUL-007: Credentials stored as plain text

Severity Medium Commit c424b4d
Type Information Leakage Status Acknowledged

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

Throughout the chainService attestor codebase, the user’s username and password are stored
as plaintext.

1 ...
2

3 signing_service:
4 ...
5 username: "username"
6 password: "password"

Snippet 4.10: Username and password fields from config.yaml.

1 func SetupSigner(cfg *config.SigningServiceConfig) error {
2 logger.GetLogger().Info("Setting up signer",
3 zap.String("username", cfg.Username),
4 zap.String("password", cfg.Password),
5 ...
6 }

Snippet 4.11: Username and password are written directly to logs in sign.go.

Additionally, password strings are compared directly when authenticating users.

1 func registerHandlers() {
2 http.HandleFunc("/sign", func(w http.ResponseWriter, r *http.Request) {
3 r.Close = true
4

5 username, password, _ := r.BasicAuth()
6 cfgUser, cfgPass := config.GetUsernamePassword()
7

8 if username != cfgUser || password != cfgPass {
9 w.WriteHeader(http.StatusForbidden)

10 return
11 }
12

13 ...
14 }
15 }

Snippet 4.12: Direct password comparisons in serve.go.

Impact Storing user passwords as plain-text in config files and logs increases the risk of
compromising those credentials. While users could reasonably keep the config and logs secret,
keeping passwords in plain-text unnecessarily adds a surface of attack of which users must be

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

18 4 Vulnerability Report

cognizant. Additionally, comparing plain-text password strings directly can be vulnerable to
side-channel attacks.

Recommendation Avoid storing the plain-text credentials of users. Instead, use a service
like Vault (https://www.hashicorp.com/products/vault) or AWS secrets manager (https:
//aws.amazon.com/secrets-manager/). When comparing passwords, hashes of the passwords
should be compared instead of comparing the passwords directly.

Developer Response Plaintext logging of credentials has been removed. For password
verification, we are still exploring better methods for performing authentication.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

https://www.hashicorp.com/products/vault
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/secrets-manager/

4.1 Detailed Description of Issues 19

4.1.8 V-V23-VUL-008: Index never incremented for pruning

Severity Medium Commit c424b4d
Type Logic Error Status Fixed

File(s) attestor/chainService/chain/ethereum/client.go

Location(s) pruneBaseSeqNum()
Confirmed Fix At N/A

The pruneBaseSeqNum function is responsible for iterating through the different baseSeqNamespaces
checking for potentially missed packets and re-sending them. To transition to a new namespace,
it is supposed to increment a variable named index — this variable is never incremented.

Impact Not incrementing this variable means that, if there is more than one namespace, the
pruning and re-sending procedure will never be activated for any namespace other than the
first.

Recommendation Add an increment to index.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

20 4 Vulnerability Report

4.1.9 V-V23-VUL-009: Add rate limiting to DB service

Severity Medium Commit 08f5a8e
Type Denial of Service Status Fixed

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

Rate limiting is a common technique for reducing repeated actions from the same user. For
servers and databases, using rate limiting is critical for avoiding denial of service attacks which
flood the application with bogus information, limiting the bandwidth to deal with actual
requests.

Impact Without appropriate rate limiting, the application may be vulnerable to denial of
service attacks.

Recommendation Add in rate limiting.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 21

4.1.10 V-V23-VUL-010: Quorum threshold initialized to zero

Severity Low Commit c77637b
Type Logic Error Status Fixed

File(s) bridge/AttestorManager.sol

Location(s) N/A
Confirmed Fix At N/A

The quorum threshold is initialized to 0 and can be updated by calling updateQuorum. When the
threshold is 0, no signatures are required to vote down a given packet (see _checkSignatures

implementation). Thus, on initialization of contracts, a malicious user can vote down valid
packets until this threshold value is set.

Impact A malicious user can vote down packets without any attestor input until the threshold
is updated to be greater than 0.

Recommendation Set the threshold to something greater than 0 during initialization and do
not allow the threshold to be set to 0 when updating it.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

22 4 Vulnerability Report

4.1.11 V-V23-VUL-011: Missing check for valid threshold

Severity Low Commit c77637b
Type Data Validation Status Fixed

File(s) aleo/programs/token_bridge_v0003.leo

Location(s) remove_attestor_tb(), add_attestor_tb()
Confirmed Fix At N/A

Unlike update_threshold_tb, there is no check in remove_attestor_tb that the new_threshold is
no more than the total number of attestors after the update. The same check is missing from
add_attestor_tb.

Impact It is possible to accidentally update the threshold to be greater than the total number
of attestors, which makes passing any proposal impossible.

Recommendation Add a check that the new threshold is less than or equal to the total number
of attestors.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 23

4.1.12 V-V23-VUL-012: Disable vote updating on executed proposals

Severity Low Commit c77637b
Type Logic Error Status Fixed

File(s) aleo/programs/council_v0003.leo

Location(s) update_vote()
Confirmed Fix At N/A

The function update_vote allows a member to update their vote on a proposal which they have
already voted on. However, there is no check that this proposal is still active (i.e., that the
proposal has not yet been executed).

Impact This could lead to confusing accounting where the results of a vote are obscured by
votes that are updated after the proposal is executed.

Recommendation Disable vote updating once a proposal has been executed.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

24 4 Vulnerability Report

4.1.13 V-V23-VUL-013: Missing response body close after HTTP request

Severity Low Commit c424b4d
Type Resource Leak Status Fixed

File(s) sign.go

Location(s) dial
Confirmed Fix At N/A

The documentation for Go’s HTTP client (https://go.dev/src/net/http/response.go) states
that whenever the error returned by executing an HTTP request is nil, the body of the response
must be closed by the caller. However, within the dial function in sign.go, the response body is
never closed.

1 func dial(u string) error {
2 ...
3

4 resp, err := http.DefaultClient.Do(req)
5 if err != nil {
6 return err
7 }
8

9 if resp.StatusCode < 400 || resp.StatusCode > 499 {
10 return fmt.Errorf("expected status code 4xx, got %d", resp.StatusCode)
11 }
12

13 return nil
14 }

Snippet 4.13: Snippet from dial()

Impact Failing to close the body of the response can lead to a resource leakage. However, since
dial should only be called once in the lifespan of the service, the impact of this leak should be
minimal.

Recommendation Call resp.Body.Close() whenever err is non-nil.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

https://go.dev/src/net/http/response.go

4.1 Detailed Description of Issues 25

4.1.14 V-V23-VUL-014: Arbitrary length Aleo addresses

Severity Low Commit c424b4d
Type Data Validation Status Fixed

File(s) solidity/contracts/main/tokenservice/TokenService.sol

Location(s) transfer()
Confirmed Fix At N/A

In the function transfer, the argument receiver is a string that is meant to represent an Aleo
address. There are currently no checks that this is a valid Aleo address, including specifically
no checks on the length of this string.

Impact A malicious user could send packets with extremely long receiver strings which are
clearly invalid (as Aleo addresses are known to be 63 characters long). These large packets could
take a long time for the attestors to handle, slowing down the bridge unnecessarily.

Recommendation Because the length of Aleo addresses is known, add a check to the transfer

functions which verifies that the length of the receiver Aleo address is exactly 63 characters
long.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

26 4 Vulnerability Report

4.1.15 V-V23-VUL-015: Npm audit issues

Severity Low Commit 08f5a8e
Type Dependency Status Fixed

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

On running npm audit, the following summary was reported:

1 # npm audit report
2

3 ...
4

5 8 vulnerabilities (6 moderate, 2 critical)
6

7 To address all issues, run:
8 npm audit fix

Snippet 4.14: Output from npm audit

Impact Some of the vulnerabilities are reported as potentially critical, including command
injection and sandbox escaping.

Recommendation Run npm audit fix to address the issues.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 27

4.1.16 V-V23-VUL-016: Old unconfirmed packets fetched first

Severity Low Commit 08f5a8e
Type Logic Error Status Intended Behavior

File(s) services/unconfirmedPacket.service.ts

Location(s) findByAttestor()
Confirmed Fix At N/A

When fetching unconfirmed packets, the following function is used which fetches the first limit
number of unconfirmed packets associated with a particular attestor:

1 public async findByAttestor(attestor: string, limit: number): Promise<
UnconfirmedPacket[]> {

2 const DEAFULT_LIMIT = 1000;
3

4 if (isEmpty(attestor)) throw new HttpException(400, ’Attestor is empty’);
5

6 const docLimit = isNaN(Number(limit)) ? DEAFULT_LIMIT : limit || DEAFULT_LIMIT;
7

8 const unconfirmedPacket: UnconfirmedPacket[] = await this.unconfirmedPacket
9 .find({

10 attestorSigner: attestor,
11 })
12 .sort({
13 createdAt: 1,
14 })
15 .limit(docLimit);
16

17 return unconfirmedPacket;
18 }

Snippet 4.15: Snippet from findByAttestor()

The function fetches all entries with find, sorts them by their creation date using sort, and
finally cuts off the first docLimit entries with limit.

The issue is with .sort({createAt: 1}), which sorts the entries in ascending order. This means
that packets will be retrieved starting with the oldest. As a result, if the number of entries
associated with a particular attestor is greater than the limit, the newest entries will be left
out.

Impact Users may call this and not realize that the newest entries are left out. This could lead
to missed unconfirmed packets, especially if the reading from this database is automated by the
attestors.

Recommendation Make the order descending by changing .sort({createAt: 1}) to .sort({

createAt: -1}).

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

28 4 Vulnerability Report

Developer Response This is actually intended behavior. Because unconfirmed packets are
periodically deleted, subsequent calls will reveal newer unconfirmed packets as older ones are
processed.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 29

4.1.17 V-V23-VUL-017: Updating unsupported token info

Severity Warning Commit c77637b
Type Data Validation Status Fixed

File(s) base/tokenservice/TokenSupport.sol

Location(s) updateVault()
Confirmed Fix At N/A

The function updateVault allows the owner of the contract to update the vault address for a
supported token. However, there is no check that the token whose vault is being updated is
actually a supported token.

Impact This could lead to mistakes where the vault for some not-yet-supported token is
updated to an incorrect vault address for that vault. While this vault address would be updated
when the token is added via addToken, the successful call to updateVault would still yield a
potentially confusing event.

Recommendation Add a check that updateVault is only called on a supported token.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

30 4 Vulnerability Report

4.1.18 V-V23-VUL-018: No verification that token is supported on release

Severity Warning Commit c77637b
Type Data Validation Status Acknowledged

File(s) main/Holding.sol

Location(s) release()
Confirmed Fix At N/A

The release function in the Holding contract is used to allow users to reclaim their funds after
they were locked and subsequently unlocked by the council.

1 function release(address user, address token) external virtual checkZeroAddress(token
){

2 require(token != ETH_TOKEN, "Holding: eth token Address");
3 uint256 amount = _release(user, token);
4 require(IIERC20(token).transfer(user, amount), "Holding: erc20 release failed");
5 }

Snippet 4.16: release implementation.

release does not check that the token requested is in fact a token which is supported by the
protocol (in fact, no such checking infrastructure exists in this contract).

Impact A malicious user may request a release on a token that is not supported. This is not
disastrous, as the amount released is the amount for the token in the unlocked mapping (see
_release implementation in the code), which would be 0 unless the council explicitly unlocked
the requested amount on the token (after it was already locked). However, there are no checks
that the amount is greater than 0, meaning this function could be spammed to create bogus
Released events (which are emitted in _release).

Recommendation Add checking for supported tokens in the Holding contract and add a 0

check on the release amount.

Developer Response The developers have acknowledged the issue but have decided at this
time bogus Released events are not a major concern.The main reason not to make this change is
to avoid unwanted dependencies. The council will manually check and release tokens, so the
assumption is that the council will act correctly.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 31

4.1.19 V-V23-VUL-019: Missing bounds check

Severity Warning Commit c77637b
Type Data Validation Status Fixed

File(s) token_service_v0003.leo

Location(s) update_min_transfer_ts, update_max_transfer_ts
Confirmed Fix At N/A

When adding a token with the token service, the min and max transfer values are validated to
ensure that the min transfer is no greater than the max transfer.

1 transition add_token_ts(
2 ...
3 public min_transfer: u128,
4 public max_transfer: u128,
5 ...
6) {
7 assert(max_transfer >= min_transfer);
8 ...
9 return then finalize(...);

10 }

Snippet 4.17: Snippet from add_token_ts()

However, when updating the min or max transfer values for an existing token, no such validation
is performed.

Impact If token contract owners are allowed to erroneously set their min and max transfer
values to invalidate the conidtion max_transfer >= min_transfer, then no tokens can be sent.
This is because no amount will satisfy the following assertions in token_send:

1 transition token_send(...) {
2 ...
3 let min_amount: u128 = Mapping::get(min_transfers, wrapped_addr);
4 assert(amount >= min_amount);
5

6 let max_amount: u128 = Mapping::get(max_transfers, wrapped_addr);
7 assert(amount <= max_amount);
8 ...
9 }

Snippet 4.18: Snippet from token_send()

Recommendation Add the check assert(max_transfer >= min_transfer) to any functions
that can update the min and max transfer values for a token. Particularly, this includes
update_min_transfer_ts and update_max_transfer_ts.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

32 4 Vulnerability Report

4.1.20 V-V23-VUL-020: Non-restrictive types

Severity Warning Commit 08f5a8e
Type Data Validation Status Fixed

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

Several type specifications within the DB service lack sufficient strictness to validate parame-
ters.

1. Within utils.ts, the decodeNetworkChainId can be restricted to only accept bigint argu-
ments (instead of number | bigint).

1 const verifyNumber = (num: number) => {
2 if (parseInt(num.toString()).toString() !== num.toString()) {
3 throw Error(’Error representing chainId as number. Pass as a BigInt’);
4 }
5 };

Snippet 4.19: Validation for decodeNetworkChainId arguments, which passes even when num is
Infinity.

2. Within chainSignature.dto.ts, the signature parameter should be made non-optional.
3. Within unconfirmedPacket.dto.ts, attestorSigner should have type 0x${string} | aleo$

{string}.

Impact The lack of data validation through sufficiently strict types could allow for illegal
representations of the ChainSignature or UnconfirmedPacket objects to make their way onto the
database.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 33

4.1.21 V-V23-VUL-021: Unnecessary unchecked blocks

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) main/Holding.sol,
base/bridge/ConsumedPacketManagerImpl.sol

Location(s) _release(), _checkSignatures()
Confirmed Fix At N/A

There are two different places where an unchecked block is used unnecessarily. The first is in the
function _release in Holding.sol.

1 unchecked {
2 unlocked[user][token] = 0;
3 }

Snippet 4.20: Snippet from _release in Holding.sol

The second is in _checkSignatures in ConsumedPacketManagerImpl.sol.

1 unchecked {
2 if(yeas > nays && yeas >= threshold) return PacketLibrary.Vote.YEA;
3 else if(nays >= threshold) return PacketLibrary.Vote.NAY;
4 }

Snippet 4.21: Snippet from _checkSignatures in ConsumedPacketManagerImpl.sol

In both cases, there is no arithmetic performed in the unchecked block and therefore it does not
do anything.

Impact This could confuse future programmers and makes the code harder to understand.

Recommendation Remove the unnecessary unchecked blocks.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

34 4 Vulnerability Report

4.1.22 V-V23-VUL-022: Unclear events on quorum threshold update

Severity Info Commit c77637b
Type Events Status Fixed

File(s) base/bridge/AttestorManager.sol

Location(s) addAttestor(), removeAttestor()
Confirmed Fix At N/A

In this contract, calls to addAttestor, removeAttestor, and updateQuorum all change the quorumRequired
. Confusingly, there is an event QuorumUpdated which records the new and old quorum, but only
if the quorum is updated through updateQuorum (and not if updated through addAttestor or
removeAttestor).

Impact This may lead to confusion for outside applications which rely on reading events.

Recommendation Call updateQuorum from addAttestor and removeAttestor and remove the
extra entry from the AttestorAdded and AttestorRemoved events.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 35

4.1.23 V-V23-VUL-023: Unnecessary internal function

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) base/tokenservice/TokenSupport.sol

Location(s) _addToken()
Confirmed Fix At N/A

In TokenSupport.sol there is an external function addToken which is just a wrapper around an
internal function _addToken with an additional onlyOwner check. The internal function _addToken

is only called from addToken and thus the logic from _addToken can just be added to addToken.

Impact The use of the unnecessary internal function may confuse future developers and
makes understanding the code a bit more difficult.

Recommendation Merge _addToken into addToken.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

36 4 Vulnerability Report

4.1.24 V-V23-VUL-024: Unnecessary function arguments

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) base/tokenservice/TokenSupport.sol

Location(s) removeToken(), enable(), disable()
Confirmed Fix At N/A

The function removeToken takes as argument _destChainId which is compared to the contract’s
destChainId and is then added as an argument to the emitted event.

1 function removeToken(
2 address tokenAddress,
3 uint256 _destChainId
4) external virtual onlyOwner {
5 require(isSupportedToken(tokenAddress),"TokenSupport: token not supported");
6 require(_destChainId == destChainId, "TokenSupport: target chain mismatch");
7 emit TokenRemoved(tokenAddress, _destChainId);
8 delete supportedTokens[tokenAddress];
9 }

Snippet 4.22: removeToken implementation

The argument _destChainId could simply be removed and replaced in the event with destChainId

.

This same issue is also present for the functions enable and disable.

Impact This obscures the desired behavior of the function and makes future maintainability
and understanding of the code more challenging.

Recommendation Remove the unnecessary function argument.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 37

4.1.25 V-V23-VUL-025: Unnecessary Getter Functions

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) base/tokenservice/VaultService.sol

Location(s) token(), name()
Confirmed Fix At N/A

The VaultService contract defines two private variables _token_ and _name_ and then adds two
getters named token() and name() for each respectively. This can be succinctly achieved by
making the variables public and removing the underscores from their name, as Solidity adds
getters for public variables of the same name.

Impact This unnecessary code makes the contract larger than it needs to be and can confuse
developers as to the intended behavior.

Recommendation Make the public variables as suggested.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

38 4 Vulnerability Report

4.1.26 V-V23-VUL-026: Missing non-zero checks on transaction parameters

Severity Info Commit c77637b
Type Data Validation Status Acknowledged

File(s) solidity/.../Holding.sol, solidity/.../TokenSupport.sol

Location(s) lock(user, token, amount), lock(user), addToken()
Confirmed Fix At N/A

Some transactions within Holding.sol and TokenSupport.sol are missing validation checks on
parameter values. While some checks are present, the following transaction parameters are
missing checks for zero values:

1 function lock(address user, address token, uint256 amount) external virtual
checkZeroAddress(user){

2 require(token != ETH_TOKEN, "Holding: eth token address");
3 _lock(user,token,amount);
4 }

Snippet 4.23: Missing check for non-zero amount on lock(user, token, amount) in Holding.sol

1 function lock(address user) external virtual payable {
2 require(msg.value > 0, "Holding: requires eth transfer");
3 _lock(user, ETH_TOKEN, msg.value);
4 }

Snippet 4.24: Missing check for non-zero user on lock(user) in Holding.sol

1 function addToken(
2 address tokenAddress,
3 uint256 _destChainId,
4 address vault,
5 string memory destTokenAddress,
6 string memory destTokenService,
7 uint256 min,
8 uint256 max
9) external virtual onlyOwner {

10
11 }

Snippet 4.25: Missing check for non-zero _vault on addToken(...) in TokenSupport.sol

Impact While zero values for these parameters do not pose any serious security risk, they
allow users to issue spurious transactions on the Holding contract.

Recommendation Add checks that force the transactions to revert when passed invalid zero
values for the parameters described above.

Developer Response The developers implemented the suggested fixes for Holding.sol. At
this time, they have elected to allow the zero address for vaults in TokenSupport.sol. The main

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 39

reason is that the vault is used to send funds to a high yield contract and acts only as temporary
storage. The council sends to the vault and the vaults sends to the high yield contract. A vault
for tokens that are not supported by the high yield contract is not necessary (e.g. USDT). In
those cases, the vault address can safely be the zero address.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

40 4 Vulnerability Report

4.1.27 V-V23-VUL-027: Remove commented code

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) ConsumedPacketManagerImpl.sol, TokenSupport.sol,
Holding.sol

Location(s) _checkSignatures(), enable(), _release()
Confirmed Fix At N/A

There are several instances of code that has been commented out within the repository.

1 function _checkSignatures(bytes32 packetHash, bytes memory signatures, uint256
threshold) internal view returns (PacketLibrary.Vote) {

2 ...
3 for(uint256 i = 0; i < threshold; i++) {
4 // require(signatures[i].length == 65, "ConsumedPacketManagerImpl: invalid

signature length");
5 (v,r,s) = _signatureSplit(signatures, i);
6 ...
7 }
8 ...
9 }

Snippet 4.26: From ConsumedPacketManagerImpl.sol

1 function enable(
2 address tokenAddress,
3 uint256 _destChainId
4) external virtual onlyOwner {
5 // require(tokenAddress != ZERO_ADDRESS, "Zero Address");
6 ...
7 }

Snippet 4.27: From TokenSupport.sol

1 function _release(address user, address token) internal whenNotPaused nonReentrant
checkZeroAddress(user) returns (uint256 amount) {

2 // require(unlocked[user][token] >= amount, "Insufficient amount");
3 ...
4 }

Snippet 4.28: From Holding.sol

Impact Code in comments hurts the readability of the code base overall.

Recommendation For maintainability reasons, we recommend removing commented code.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 41

4.1.28 V-V23-VUL-028: Unused function _splitSignature

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) solidity/contracts/base/bridge/ConsumedPacketManagerImpl.sol

Location(s) _splitSignature()
Confirmed Fix At N/A

ConsumedPacketManagerImpl.sol contains an unused function shown below.

1 /// @dev Splits a signature into its components (v, r, s)
2 /// @param sig The signature to be split
3 /// @return v The recovery id as part of the signature
4 /// @return r The R component of the signature
5 /// @return s The S component of the signature
6 function _splitSignature(bytes memory sig) internal pure returns (uint8 v, bytes32 r,

bytes32 s) {
7 ...
8 }

Snippet 4.29: Unused function _splitSignature

Impact Since this function is very similar to the _signatureSplit function, correctly maintain-
ing the code may be difficult for developers in the future.

Recommendation Remove the unused _splitSignature function.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

42 4 Vulnerability Report

4.1.29 V-V23-VUL-029: Unnecessary cast to address

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) solidity/.../TokenSupport.sol

Location(s) updateVault()
Confirmed Fix At N/A

The updateVault function within TokenSupport.sol unnecessarily casts the token vault to an
address.

1 /// @notice Updates the vault address associated with a token, callable only by the
owner

2 /// @param token The address of the token
3 /// @param _vault The new address of the vault
4 function updateVault(address token, address _vault) external virtual onlyOwner {
5 address vault = address(supportedTokens[token].vault);
6 ...
7 }

Snippet 4.30: Unnecessary cast to address

Since supportedTokens maps addresses to Token instances, this cast is not necessary.

1 struct Token {
2 address tokenAddress;
3 address vault;
4 string destTokenAddress;
5 string destTokenService;
6 uint256 minValue;
7 uint256 maxValue;
8 bool enabled;
9 }

Snippet 4.31: The vault parameter of Token is type address

Impact Casting unnecessarily slightly diminishes code readability and may cause minor
confusion for developers in the future.

Recommendation Remove the unnecessary cast to address.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 43

4.1.30 V-V23-VUL-030: Refactor get_valid_unique_address_count method

Severity Info Commit c77637b
Type Maintainability Status Intended Behavior

File(s) council_v0003.leo, token_bridge_v0003.leo, utils.leo

Location(s) get_valid_unique_address_count
Confirmed Fix At N/A

Currently, get_valid_unique_address_count is defined in multiple files, including countil_v0003

.leo and token_bridge_v0003.leo.

Additionally, the get_valid_unique_address_count logic could be simplified by using two nested
for loops instead of a sequence of if statements.

1 function get_valid_unique_address_count(addresses: [address; 5]) -> u8 {
2 let unique_addresses: u8 = 0u8;
3 if (addresses[0u8] != ZERO_ADDRESS) {
4 assert_neq(addresses[0u8], addresses[1u8]);
5 assert_neq(addresses[0u8], addresses[2u8]);
6 assert_neq(addresses[0u8], addresses[3u8]);
7 assert_neq(addresses[0u8], addresses[4u8]);
8 unique_addresses += 1u8;
9 }

10

11 ...
12 }

Snippet 4.32: Original version of get_valid_unique_address_count

Impact Defining get_valid_unique_address_count multiple times hurts the maintainability
of the code, as any change to the function must be replicated at every definition. Additionally,
simplifying the code by using nested for loops will make the code easier to understand for
future developers.

Recommendation There are two ways that we suggest get_valid_unique_address_count be
refactored:

1. Use two nested for loops to simplify the logic of checking for unique addresses.
2. Define get_valid_unique_address_count only once, and call that version from all files that

use the function. Note that the version defined in utils.leo is currently not used.

The code block below describes the suggested revision for get_valid_unique_address_count.

1 function get_valid_unique_address_count(addresses: [address; 5]) -> u8 {

2 let unique_addresses: u8 = 0u8;

3 for i:u32 in 0u32..5u32 {

4 if (addresses[i] != ZERO_ADDRESS) {

5 for j:u32 in 0u32..5u32 {

6 if (i < j) {

7 assert_neq(addresses[i], addresses[j]);

8 }

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

44 4 Vulnerability Report

9 }

10 unique_addresses += 1u8;

11 }

12 }

13 }

Developer Response The developers have chosen to keep this implementation as an optimiza-
tion to avoid unnecessary looping.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 45

4.1.31 V-V23-VUL-031: Unnecessary check for equal vote counts

Severity Info Commit c77637b
Type Logic Error Status Intended Behavior

File(s) token_bridge_v0003.leo

Location(s) get_majority_count
Confirmed Fix At N/A

In get_majority_count, the program halts whenever the number of yay and nay votes is equal.
However, given that some signers may be the zero address, the count may indeed be equal.
Additionally, since the threshold can be updated to any value between 1 and 5, it is possible to
have a valid vote count where the yays and nays are equal. In these cases, transitions that call
get_majority_count will revert unnecessarily.

1 transition get_majority_count(packet_hash: field, signers: [address; 5], signs: [
signature; 5]) -> (bool, u8) {

2 let unique_signers: u8 = get_valid_unique_address_count(signers);
3 let yay_count: u8 = 0u8;
4 let nay_count: u8 = 0u8;
5

6 ...
7 for i: u8 in 0u8..SUPPORTED_THRESHOLD {
8 if (signers[i] != ZERO_ADDRESS) {
9 let yay: bool = signature::verify(signs[i], signers[i],

packet_hash_with_yay);
10 let nay: bool = signature::verify(signs[i], signers[i],

packet_hash_with_nay);
11 assert(yay | nay);
12 if (yay) { yay_count = yay_count + 1u8; }
13 if (nay) { nay_count = nay_count + 1u8; }
14 }
15 }
16

17 assert(yay_count != nay_count);
18 ...
19 }

Snippet 4.33: Snippet from get_majority_count

Impact On a call to token_service_v0003.leo/token_receive by any token connector, if the
yay and nay counts are equal, the transaction will revert. This may not be the desired behavior
when the yay and nay vote counts reach the threshold.

Recommendation If neither count reaches the set threshold, revert the transaction. If the vote
counts are equal and above the threshold, default to a victory for the nay votes.

Developer Response The developers indicated that this is the intended behavior. In particular,
when the threshold is less than 50% and there are an equal number of yes and no votes, the
assert will not be satisfied and the transaction will revert.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

46 4 Vulnerability Report

4.1.32 V-V23-VUL-032: Can make stronger voting check

Severity Info Commit c77637b
Type Logic Error Status Intended Behavior

File(s) aleo/programs/token_bridge_v0003.leo

Location(s) get_majority_count()
Confirmed Fix At N/A

The function get_majority_count iterates over the signatures in the provided array and checks
whether or not the signer voted "yay" or "nay" on the proposal. The following logic shows this
verification loop.

1 for i: u8 in 0u8..SUPPORTED_THRESHOLD {
2 if (signers[i] != ZERO_ADDRESS) {
3 let yay: bool = signature::verify(signs[i], signers[i], packet_hash_with_yay)

;
4 let nay: bool = signature::verify(signs[i], signers[i], packet_hash_with_nay)

;
5 assert(yay | nay);
6 if (yay) { yay_count = yay_count + 1u8; }
7 if (nay) { nay_count = nay_count + 1u8; }
8 }
9 }

Snippet 4.34: Snippet from example()

The check assert(yay | nay) is intended to check that the signer has in fact voted either
affirmatively or negatively on the proposal. However, a strong check would use XOR to ensure
they only voted one way. It should be noted that other issues would have to occur for both yay

and nay to be true in this context, but it doesn’t hurt to make the stronger assertion.

Impact Strengthening the assertion will make the intention more clear and could help avoid
bugs in the future if the code changes.

Recommendation Update the assertion to use XOR.

Developer Response At this time, the developers do not want to add the stronger check. In
particular, because both yes and no votes cannot be signed in the same packet, the OR operator
is equivalent to XOR in this case..

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 47

4.1.33 V-V23-VUL-033: Unnecessary function argument for chain ID

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) aleo/programs/token_bridge_v0003.leo

Location(s) finalize publish()
Confirmed Fix At N/A

In finalize publish, the source_chain_id is always just set to ALEO_CHAIN_ID, and ALEO_CHAIN_ID

is used for getting the bridge_sequence_no in the function body.

Impact This can be confusing to developers who may not realize the source chain ID is always
Aleo and furthermore may forget to update ALEO_CHAIN_ID in the body of finalize publish if
this assumption were to ever change.

Recommendation Remove the unnecessary function argument and use ALEO_CHAIN_ID in-
stead.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

48 4 Vulnerability Report

4.1.34 V-V23-VUL-034: Typos and incorrect comments

Severity Info Commit c77637b
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Description In the following locations, the auditors identified minor typos and potentially
misleading comments:

▶ council_v0003.leo

• proposal_votes: The comment indicates the mapping is true if the member has
voted, but it is actually true only if they voted to accept.

▶ token_service_v0003.leo

• max_transfers: The comment above the mapping says minimum instead of maximum.

▶ wusdc_token_v0003.leo

• mint_public: The comment above the computation of receiver_amount references
transfer_public instead of min_public.

• burn_public: Same issue as mint_public.
• burn_public: Parameter of transition is called spender but parameter of same value

in finalize is called receiver.

Impact These minor errors may lead to future developer confusion.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 49

4.1.35 V-V23-VUL-035: Unused mapping proposal_vote_counts

Severity Info Commit c77637b
Type Maintainability Status Intended Behavior

File(s) council_v0003.leo

Location(s) N/A
Confirmed Fix At N/A

Within council_v0003.leo, the mapping proposal_vote_counts is never used. Though values
are set, they are never referenced in the program.

1 /// Tracks the number of votes received by the given proposal
2 mapping proposal_vote_counts: field => u8;

Snippet 4.35: Definition of proposal_vote_counts

Impact Unused mappings like proposal_vote_counts may lead to confusion for future devel-
opers, hurting code maintainability.

Recommendation Remove proposal_vote_counts from council_v0003.leo.

Developer Response At this time, the developers have decided not to remove the unused
mapping. This is because the mapping is used by the frontend to see the council votes.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

50 4 Vulnerability Report

4.1.36 V-V23-VUL-036: Unnecessary code and typos in attestor

Severity Info Commit c424b4d
Type Maintainability Status Fixed

File(s) N/A
Location(s) See description

Confirmed Fix At N/A

Unnecessary Code Several files in the attestor repository contain unnecessary or unused
code.

▶ db.go contains the unused RetrieveAndDeleteFirstPacket method. Additionally, since the
method retrieveAndDeleteFirstKey is only referenced here, it should also be removed
from bolt.go.

▶ The function RemoveKey in db.go is unused and should be removed.
▶ The functions initPacketFeeder and consumeMissedPackets are defined as methods on the

relay struct but do not use the relay, so can just be defined as normal functions.
▶ The function body of CloseDB in db.go is equivalent to just return closeDB()

▶ The unconfirmedEndPoint constant in collector.go is unused.
▶ GetTransactionById, GetMappingNames, GindTransactionByProgramId, and Send in rpc.go

for Aleo are never used.

Typos Additionally, we found the following typos that should be corrected:

▶ The function named exitsInGivenBucket from bolt.go should instead be called existsInGivenBucket

, as it is checking if a given key "exists" in the given bucket.
▶ In the chain service config.yaml, the node_url for testnet is set to https://api.explorer.

aleo.org/v1|testnet3. The final | in that URL should instead be /.
▶ In the configuration, the bridge contract is given as token_bridge_v0002.aleo instead of

the newer token_bridge_v0003.aleo.

Impact Including unnecessary/unused code and typos hurts readability and maintainability
for developers.

Recommendation Remove all unnecessary/unused code and fix typos.

Developer Response The developers provide the following responses for suggested fixes:

1. For the function RemoveKey in db.go, they want to keep this in case they want to delete
entries from the Bolt database on the fly.

2. For the node_url in config.yaml, this syntax is intentional.
3. For the bridge contract in config.yaml, they intentionally specify token_bridge_v0002.aleo

as this is the current contract in use. They will update this when they update the contract
being used.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

4.1 Detailed Description of Issues 51

4.1.37 V-V23-VUL-037: Use express best practices

Severity Info Commit 08f5a8e
Type Library Usage Status Fixed

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

The express library best practices for security contain a number of suggestions which are not
currently followed by the database service, including:

▶ Reduce fingerprinting by disabling X-Powered-By

▶ Use either express-session or cookie-session to handle cookies and don’t use the default
session cookie name

▶ Use TLS

Impact Following best practices can help avoid unanticipated attacks.

Recommendation Adopt all best practices suggested by the express developers.

Developer Response The developers have implemented most of the best practices and are in
the process of implementing TLS.

Veridise Audit Report: Ethereum-Aleo Bridge © 2024 Veridise Inc.

https://expressjs.com/en/advanced/best-practice-security.html

52 4 Vulnerability Report

4.1.38 V-V23-VUL-038: Typos and unused code in database service

Severity Info Commit 08f5a8e
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Description In the following locations, the auditors identified minor typos and unused code:

▶ src/routes/chainSignature.route.ts:

• initializeRoutes(): commented code

▶ src/routes/unconfirmedPacket.route.ts:

• initializeRoutes(): commented code

▶ src/middlewares/signatureValidator.middleware.ts:

• signatureValidatorMiddleware(): commented code

▶ src/services/chainSignature.service.ts:

• update(): entire function commented
• delete(): unimplemented function

▶ src/services/unconfirmedPacket.service.ts:

• update(): unimplemented function

Impact These minor errors may lead to future developer confusion.

© 2024 Veridise Inc. Veridise Audit Report: Ethereum-Aleo Bridge

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-V23-VUL-001: Arbitrary messages can be sent
	V-V23-VUL-002: Anyone can take ownership of the bridge
	V-V23-VUL-003: Anyone can remove a token service
	V-V23-VUL-004: Attacker can create signature database entry
	V-V23-VUL-005: Arbitrary users can add unconfirmed packets
	V-V23-VUL-006: Incorrect logic for low thresholds
	V-V23-VUL-007: Credentials stored as plain text
	V-V23-VUL-008: Index never incremented for pruning
	V-V23-VUL-009: Add rate limiting to DB service
	V-V23-VUL-010: Quorum threshold initialized to zero
	V-V23-VUL-011: Missing check for valid threshold
	V-V23-VUL-012: Disable vote updating on executed proposals
	V-V23-VUL-013: Missing response body close after HTTP request
	V-V23-VUL-014: Arbitrary length Aleo addresses
	V-V23-VUL-015: Npm audit issues
	V-V23-VUL-016: Old unconfirmed packets fetched first
	V-V23-VUL-017: Updating unsupported token info
	V-V23-VUL-018: No verification that token is supported on release
	V-V23-VUL-019: Missing bounds check
	V-V23-VUL-020: Non-restrictive types
	V-V23-VUL-021: Unnecessary unchecked blocks
	V-V23-VUL-022: Unclear events on quorum threshold update
	V-V23-VUL-023: Unnecessary internal function
	V-V23-VUL-024: Unnecessary function arguments
	V-V23-VUL-025: Unnecessary Getter Functions
	V-V23-VUL-026: Missing non-zero checks on transaction parameters
	V-V23-VUL-027: Remove commented code
	V-V23-VUL-028: Unused function _splitSignature
	V-V23-VUL-029: Unnecessary cast to address
	V-V23-VUL-030: Refactor get_valid_unique_address_count method
	V-V23-VUL-031: Unnecessary check for equal vote counts
	V-V23-VUL-032: Can make stronger voting check
	V-V23-VUL-033: Unnecessary function argument for chain ID
	V-V23-VUL-034: Typos and incorrect comments
	V-V23-VUL-035: Unused mapping proposal_vote_counts
	V-V23-VUL-036: Unnecessary code and typos in attestor
	V-V23-VUL-037: Use express best practices
	V-V23-VUL-038: Typos and unused code in database service

